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~ 5.1.1. Second — Order Systems
There are many applications of control syéténis- work asmzi‘sécond order system
such as servo system which is the main case study of our work. o
A The servo system shown in Fig.( 5.1 (a)) consists of a proportlonal eontroller
and load elements (inertia and viscous friction elements). Suppose that we wish to
control the output position(c) in accordance w1th the input position r. _
By usmg the transfer function , Fig.( 5".1 {a)) can be redrawn as in Flg( 5.1
(b)), which can be modified to that shown in Fig.{ 5.1 (¢))- |
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Fig.(S.i) (a) Servo system; (b) block- diagram; (c) simplified block diagram.

The closed — loop transfer function is then obtained as:
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R(s) Js?+Bs+K T s2+ (B/]) s +(K/])
Such a system where the closed - loop_transfer function possesses two poles is
called a secon_d - order system. (some second — order systems may involve one or

two ZEros).:
5.1.1.1. Step Response of Second — Order System
The closed — Loop transfer function of the system shown in Fig.(5.1.(c)) is

cis)___ K
R(s) Js?+Bs+K S (5.2)
Which can be rewritten as:

K
;ES) - _— J e e (5.3)
s)- [s+-:—]+ }(EB-}-) -%][s+%-—,}(%) -%]

The closed — loop poles are complex conjugates if B? — 4JK < 0 and they are

real if B> — 4JK = 0. In the transient response analysis, it is convenient to write:

K= 2 ,?=2§mn=2o ' N

. T
Where (o) is called the attenuation; (o), the undamped natural frequency; and
(©), the damping ratio of the systém. The damping ratio ({) is the ratio of the actual

damping (B) to the critical damping B. = 2/7K or N

Bc 2/fK
In terms of ({) and (w,), the system shown in Fig.(5.1(c)) can be modified to
that shown in Fig.(5.2), and the closed — loop transfer function C(s) / R(s) given by
equation (5.2) can be written: '

. 2 ) ’
c(s) _ s GH N\

R(s) s2+2{wns+0f

This form is called the standard form of the second — order system.
2
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Fig.(5.2) Second—order system.

_ The dynamic behavior of the second — order system can then be described in
terms of two parameters ({) and (w,). If 0 < G < 1, the closed — loop poles are
complex conjugates and lie in the left — half (s) plane. The system is then called
underdamped, and the traﬁsient response is oscillatory. If { = 0, the transient response
does not die out. If { = 1, the system is called critically damped. Overdamped systems
correspond to {> 1. |

We shall now solve for the response of the system shown in Fig.(5.2) to a unit
— step mput. We shall consider three different cases: the underdamped (0 <{ < 1),
critically damped ({ = 1), and overdamped ({ >1) cases.
1. Underdamped case (0<{<1):In this case, C(s) / R(s) can be written :

C(s) _ | w? 7
R(s) (s+ {wn + jwg)(s+ Lwg— jog) 0 (55)

N

Where Wy = m,nfl -~ (2 The frequency wy is called the dam damped natural =

' ﬁ'equency For a unit — step input, C(s) can be written :

s
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C(s) =

T Zensteds. e (5.6)
The inverse Laplace transform of equation (5.6) can be obtained easily if
C(s) is written in the following form:

it _1 s+ 27,(011
CE)=<-3 -
§ 5%+ 20wg s+ wf

1 s+ {wp fop
s (+iwp)?+ei (+iwg)?+0l

In appendix it was shown that

I-l [ s+ (wn

(s + {wn)? + m’-] =e” *nfcos wgt

I

Hence the inverse Laplace transform of equation (5.6) is obtained as:

(s + Joog )2+m2] e”nt sin wgt

[[CEI=C®)=1-e%n* (coswgt+ Jz_zz sinwgt)
~1- J‘L sin (ogt+ tan” “’ o8 et 0 6.7

2. Critically damped case ({ = 1): If the two poles of C(s) / R(s) are equal, the
system is said to be a critically damped one.
For a unit — step input, R(s) = é and C(s) can be written:

2

C) =

The inverse Laplace transform of equation (5.8) may be found as:

(s+ wp)?s

CH=1-e“*(I+w,t),  fort=0  ...(59)

3. Overdamped case (£ > 1) : In this case, the two poles of C(s) / R(s) are negativé

real and unéqual. For a unit - step input, R(s)=§ and C(s) can be written :
Y @h '
) e Tt ond5) (5 7 o g
" 4

.. (5.10)
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The inverse Laplace transform of equation (5.10) is:

— 1 ~{T+ VT2 —-1 )yt
S SEPC (£ "
(O EE TR
_ 1 e—((—‘/ZZTlm"nt
2yP-1Q@~12-1)
- wp _eTsit  gmsat Cpe
1+2Jﬁ( o o ), fort20 ...... (5.11)

Where ;= ({ + @ — 1)wp and $; = ({~ T = T)wp . Thus, the
- response ¢(t) includes two decaying exponential terms.

5.1.1.2" Definition of Transient — Response Specifications

In many practical cases, the desired performance characteristics of control
'systems are specified in terms of time — domain quantities. Systems with energy
stofﬁge cannot respond instantaneously and will exhibit transient responses whenever

- they are subjected to inputs or disturbances. '

Frequently, the performance characteristics of a control system are specified in
terms of the transient response to a unit — step input since it is easy to generate and is
sufficiently drastic. (If the response to a step input is known, it is mathematically
possible to compute the response to any the input.)

The transient response of a system to a unit — step input depends on thé initial
conditions. For convenience in comparing transient responses of various systems, it is
a common practice to use the standard initial condition that the system is at rest
initially with the output and all time derivatives thereof zero. Then the reéponse
characteristics of many systems can be easily compared.

 The transient response of a practical control system often exhibits damped
oscillations before reaching steady state. In specifying the transient — response
characteristics of a control system to a unit — step input, it is common to specify the
following and as these specifications are shown graphically in Fig.( 5.3).

.1, Delay time, ty: The delay time.is. the time required for the response to-teach - ——

half the final value the very first time.
5
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Rise time, t.: The rise time is the time required for the response to rise from

10% to 90% , 5% to 95% , or 0% to 100% of its final value. For underdamped

sc_:(__:_ondr- (_)_1_'c_l_er systems, the 0% to 10_0%_ rise ﬁme is normally used. For over
damPéd systéins, the 10% to 90% rise time is commonly used. e
Peak time ,t,: The peak time is the time required for the response to reach the
first peak of the overshoot.

Maximum (percént) overshoot, M, : The maximum overshoot is the maximum
peak value of the response curve measured from unity. If the final steady —
state value of the response differs from unity , then it is common to use the
maximum percent overshoot. It is defined by

Maximum percent overshoot = g_g_t%)_f-;%(_ﬂ';l x 100 %
The amount of the maximum (percent) overshoot directly indicates the

relative stability of the system.

Settling time ,t;: The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified by absolute
percentage of the final value (usually 2% or 5%). The settling time is related to
the largest time constant of the control system.

<4 Allowable tolerance

T
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Fig.(5.3) Unit - step response curve showing tg,t.,t,, Mp,and t,.
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The time — domain specifications just given are quite important since
most control systems are time — domain systems; that is, they must exhibit
acceptable time responses. (This means that, the control system must be
modified until the transient response is satisfactory.) - |
Note that not all these specifications .necessarily apply to any given case.
For example, for an overdamped system, the terms peak time and maximum
overshoot do not apply. (For systems that yield steady — state errors for step
inputs, this error must be kept within a specified percentage level.
5.2.1.2 A Few Comments on Transient — Response specifications

Except for certain applications where oscillations cannot be tolerated, it is
desirable. that the transient response be sufficiently fast and be sufficiently damped.
Thus, for a desirable transient response of a second — order system, the damping ratio
must be between (0.4) and (0.8). Small values of { ({ < 0.4) yield excessive overshoot

" in the transient response, and a system with a large value of { (¢ > 0.8) responds
shuggishly.

We shall see later that the maximum overshoot and the rise time conflict with

- each other. In other words, both the maximum overshoot and rise time cannot be
made smaller simultaneously. If one of them is made smaller, the other necessarily

becomes larger.

5.2.1.2 Second - Order Systems and Transient — Response Specifications

In the following, we shall obtain the rise time, peak time, maximum
overshoot, and settling time of the second — order system given by equation (5.4).
these values will be obtained in terms of () and (w,). The system is assumed to be

underdamped. _
(DRise time (t) : Referring to equation (5.7) , we obtain the rise time (t) by

lettmg c(t,) =1. o |
C(tr) —1= 1 ~ e~Sonts (cosw tr + 1/=91n mdtr) TR (5.12)
7
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t 0 , we obtain from equation (5.12) the following equation:

, Sinc- g~%¢n
coswg tr + 71:3—? sin wat =0
or
tanwqte = - g =- %’q
Thaus, the rise time (t;) is:
~ tr=;:;'tan'l(%)=%f e (5.13)

Where P is defined in Fig.( 5.4). Clearly, fora small value of t,, wq must be

large.
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Fig.(5.4) Definition of the angle B .

(2)Peak time (t,): Referring to equation (5.7), we may obtain the peak time by
differentiating C () with respect to time and letting this derivative equal zero.

Since
%‘ti ={ Wy e~%nt(cosewqgt + ﬁ sinwgt) + e~59nt (4 sinwgt — % €0S Wgt)

and the cosine terms in this last equation cancel each other, dc/dt, evaluated at t = tp,

can be simplified to

e'("’n tp = 0

dc s Wy
’r l t=te= (sin wq tp) N

This last equation yields following the equation:
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Sin wgt, = 0

or
| C gty =0, m, 2w, 3™, ...
Since the peak time corresponds to the first peak overshoot,

wgt,=7 . Hence

N =t e 5.14)

w4
The peak time r(rtp)"‘(.:offééi)bnds to one — half cycle of the frequency of damped
oscillation. ' .
(3)Maximum overshoot (M,) : The maximum overshoot occurs at the peak time or at
t=t = T /wgy. Assuming that the final value of the output is unity, M, is obtained
, from equation {(5.7) as:

M,=c¢(t)~1

= - e~ %n(/®d) (cos 7 +——— sinm)

iz
= g~ (0/0)T = g~ @/V1-P) g N, eeeees (5.15)

The maximum percent overshoot is e~ (/9™ x 100 % . |
If the final value ¢ (o) of the output is not unity, then we need to use the
following equation:

_c(tp)-c ()
M=

(4) Settling time (t;) : For an underdamped second — order system, it is convenient for
comparing the responses of systems that the settling time (t,) is defined as

foliows:

4 _ 4 .
= — =T (2% criterion) = ....... (5.16) \J

_— or - S [ — —— — — el el el e el
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5.2.1 Higher — Order Systems

In this section, a transient response analysis of higher — order systems will

ented in general terms. It will be seen that the response of higher — order
— order and second — order systems.

be pres
systems is the sum of the responses of first
Consider the system shown in Fig.(5.5). The closed — loop transfer function is:

cE__ 6@
R 1+6®HE 7 (5.18)

Ris)

G(s) »

H{s)

Fig.(5.5) Control system.

In general, G(s) and H(s) are | given as ratios of polynomials in (s) , or

P
G(s)=a—% and H(s)=g—8

Where p (s), q (8), n (8) , and d (s) are polynomials in (8). The closed— loop
transfer function given by equation (5.18) may then be written:

C(s) _ P(s)d(s)
R(s) q{s)d(s)+p)n(s)

_ bos™ +b1s™ 4. +bmy SHPM m<n)
aps™ + 238" 1 + s +ag-1 S+ap =

The transient response of this system to any given input can be obtained by a

computer simulation. If an analytical expression for the transient response is desired,

] o -
I
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then it is necessary to factor the denommator polynomlal [MATLAB may be used
for ﬁndmg the roots of the denominator polynomial, use the command roots (den).]
Once the numerator and the denominator have been factored, C(s) / R (s) can be

written in the form:

CE) _ K(+20)(s+20) e (S+7m)
R(s) (s+p1)(s+pz)--.-(S+Pn) e (5.19)

Lets us examine the response behavior of this system to a unit-step input.
Consider first the case where the closed — loop poles are all real and distinct. For a

" unit — step input, equation (5.19) can be written :
C(S)— S+ Ik

Where (a;) is the residue of the pole at s = - p;. (If the system involves multiple
poles, the ¢ (s) will have multiple — pole terms.)[The partial — fraction expansidn of
c(s) , as given by equation (), can .20 obtained easily with MATLAB. Use the residue

-1s+p

. command.]
Next, consider the case where the poles of C(s) consist of real poles and pairs
of complex — conjugate poles. A pair of complex — conjugate polés yields a second —
order term in (s). Since the factored form of the higher — order characteristic

equation consists of first — and second — order terms, equation (5.20) can be

rewritten:

bi(s + ko) + Crok, '1- 3 (q+2 )
g+2r=n

—a,ya &
Cls) s +2 =1 54py s+pj * Lk s24 2 Qi s + wf

Where we assumed all closed — loop poles are distinct. [If the closed —loop
poles involve multiple poles, C(s) must have multiple - pole terms.] Form this last
equation, we see that the response of a higher — order system is composed of a
‘number of terms involving the simple functions found in the responses of first — and
second — order systems. The unit — step response C(t), the inverse Laplace transform
of C(s), is then:

i1
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C(tya+X; aje P + Xk bx e~ %@kt coswy_ ’ 1- Ggt

+ Xoq G €™ Ok sinwy , 1- 3t fort=0........ (5.21)

Thus the response curve of a stable higher — order system is the sum of a number
of exponential curves and damped sinusoidal curves. If all closed — loop poles lie in
the left — half s — plane, then the exponential terms and the damped exponential terms
in equation (5.21) will approach zero as time (t) increases. The steady — state output
is then C(w) = a. Remember that the type of transient response is determined by the
closed — loop poles, while the shape of the transient response is primarily determined
by the closed — loop zeros. The practical procedure for plotting time response curves
of systems higher than second — order is through computer simulation.

5.3 PID Controller ‘\\9\1

PID (Proportional — Integral - Derivative) control is one of the earlier control
strategies [160]. It has a simple control structure and it is easy to tune in real word.
Therefore, it has a wide range of applications in industrial control. According to a
survey for process control systems in 1989, more than 90% of the control loops were

of the PID type [160]. PID control has been an active topic since decades ago. It is

!inter&sting to note that more than half of the industrial controllers in vse today utilize

PID or modified PID control schemes.

The usefulness of PID controls lies their general applicability to most control
systems. In particular, when the mathematical model of the plant is not known and
therefore analytical des1gn methods cannot be used, PID controls prove to be most
useful. In the field of process control systems, it is well known that the basic and
modified PID control schemes have proved their usefulness providing satisfactory
control, although in many given situations they may not provide optimal control [2].

A typical structure of PID contro} system is shown in Fig.( 5.6), where it can be

seen that in a PID controller; the error signal e(t) is used to generate the proportional,

12
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integral and derivative actions with the resulted signals weighted and summed to
form the control signal u(t) applied to the plant model.

A mathematical description of the PID controller is:

u(t) =k, [e®) + 1 [ye(®dt + Ty = L (5.22)

where u(t) is the input signal, the error signal e(t) is defined as
e(t) = r(t) — y(t) , and r(t) is the reference input signal.

PID controlier
E Phporﬁonal
it E i ¥it)
_‘@ & E > |mm| j‘ : | Plant mode} ]
5 ; :
E Derivative dfdt :

R T

Fig.(5.6) A typical PID control structure.

5.3.1 Tuning Rules For PID Controllers

5.3.1.1 PID control of plants
Fig, (5.7) shows a PID control of a plant. If a mathematical model of the

plant can be derived, then it is possible to apply various design techniques for
determining parameters of the controller that will meet the transient and steady —
state specifications of the closed — loop system. However, if the plant is so
complicated that its mathematical model cannot be easily obtained, then an
analytical approach to the design of a PID controller is not possible. Then we

must resort to experimental approaches to the tuning of PID controllers.

/5
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K, (1+ 24 Tas) Plant —»
Tis

Fig.(5.7) PID control of a plant.

The process of selecting the controller parameters to meet given
performance specifications is known as controller tuning. Zlegler and Nichols
suggested rules for tuning PID controllers (neaning to set values K, T; , and
T4) based on experimental step responses or based on the value of K, that results
in marginal stability when only proportional control action is used. Ziegler —
Nichols rules, which are briefly presented in the following, are useful when
mathematical models of plants are not known. (These rules can, of course, be
applied to the design of systems wifh known mathematical models.)Such rules
suggest a set of values of Kp, Ti,and Ty that will give a stable operation of the
system. However, the resulting system may exhibit a large maximum overshoot
in the step response, which is unacceptable. In such a case we need series of fine
tuning until an acceptable result is obtamed In fact, the Ziegler — Nichols tuning
rules give an educated guess for the parameter values and prowde a starting
point for fine tuning, rather than giving the final settings for Ky, T,,and Tgin a
single shot. |
5.3.1.2 Zeigler — Nichols rules for tuning PID controllers

Zeigler and Nichols proposed rules for determining values of the
proportional gain K, , integral time T;, and derivative time Ty based on the
transient response characteristics of a given plant. Such determination of the
parameters of PID controllers or tuning of PID controllers can be made by
engineers on — site by experiments on the plant.

There are two methods called Ziegler — Nichols tuning rules: the first method

and the second method.

Iy
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1.First method : In the first method , we obtain experimentally the response of the

plant to a unit — step input , as shown in Fig.(5.8).

~ If the plant involves neither integrator(s) nor dominant complex—conjugate

poles, then such a unit — step response cufverl;nay. ook ”S—shaped, as shown in
' Fig.(5.9). This method applies if the response to & step input exhibits an S-

shaped curve. Such step — response curves may be generated experimentally or

from a dynamic simulation of the plant.

1 ‘% ' ’ :
Plant >
ult) ' ’ )

Fig.(5.8) Unit-step response of a plant.

cf -
¥ Tangent line at
infiection point

0 b= : >

S {
- L '<-T—b .

Fig.(5.9) S-shaped response curve.
The S—shaped curve may be characterized by two constants, delay time (L) and
time constant (T). The delay time and time constant are determined by drawing a
tangent fhe at the inflection point of the S—shaped curve and determining the
- ~intersections of the tangent line with the time-axis and line -¢(t) =K ; as shown in -

/5
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Fig.(5.9). The transfer function C(s) / U(s) may then be approximated by a first —
order system with a transport lag as follows:

o) ke
U(is) Ts+1
| Ziegler and Nichols suggested to set the values of K, , T, and T4 according
to the formula shown in Table 5.1.
Table 5.1 Zeigler — Nichols Tuning Rule Based

on Step Response of Plant (First Method)

Type of K, _ T Ta
Controller '
P
T oo 0
L
P1
T L 0
0.9- —
L 0.3
PID
1.2 % 2L 0.5L

Notice that the PID controller tuned by the first method of Ziegler - Nichols
rules gives: | | '
G(s) =Ky (1 + 75+ Tes)
R D
=123 (1 +-5+05LS)

S+3)?

Thus, the PID controller has a pole at the origin and double zeros at s = -1/L.
2. Second Method: In the second method, we first set T; = oo and Tyq = 0. Using the

proportional control action only (as shown in Fig.( 5.10)), increase K, from (0) to
a critical value K at which the output first exhibits sustained oscillations. (If the

output does not exhibit sustained oscillations for whatever value k, may take, then

16
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this method does not apply.) Thus, the critical gain K., and the corresponding

period P, are experimentally determined (see Fig.(5.11)).

K@) <> w(f) ()

Fig.(5.10) Closed-loop system with a proportional controller.

o« r

AWANWAN
YA

Fig.(5.11) Sustained oscillation with period P, .

Ziegler and Nichols suggested that we set the values of the parameters K, , T; ,
and T4 according to the formula shown in Table 5.2.

i
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Table 5.2. Zeigler — Nichols Tuning Rule Based on
Critical Gain K, and Critical Period P, (Second Method).

| Cgl:o;)lt;r L K ' T ' Ta
P 0.5 Ker % 0
PI 0.45 K 2 Pq 0

PID 0.6 Ker 0.5 P 0.125 P

Notice that the PID controller tuned by the second method of Ziegler —

Nichols rules gives:

Gus) =Kyl 7+ Tas)

=06K. (1t +0.125 P 8)

0.5 Pers

(S+5=)?

=0.075 K Per

Pcr

S
Thus, the PID controller has a pole at the origin and double zeros at s = -4/Pg.
.Note that it the system has a known mathematical model (such as the transfer
function), then we can use the root — locus method to find the critical gain K, and the

frequency of the sustained oscillations @ . , where 27t / o = Pr . These values can

be found from the crossing points of the root —locus branches with the jo axis.
(Obviously, if the root — locus branches do not cross the jw axis, this method does not
apply.)

Ziegler — Nichols tuning rules (and other tuning rules presented in the literature)
have been widely used to tune PID controliers in process control systems where the
plant dynamlcs are not precisely known. Over many years, such tuning rules proved
to be very useful. Zeigler — Nichols tuning rules can, of course, be applied to plants
whose dynamics are known. (If the plant dynamics are known, many analytical and
graphical approaches to the design of PID controllers are available, in addition to
Ziegler — Nichols tuning rules.)

18
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5.1 Modifications of PID Control Schemes

«  Chapter Five

“Consider the basic PID control system shown in Fig.(5.12(a)), where the system
is subjected to disturbances and noises. Fig.(5.12(b)) is a modified block diagram of
the same system. ) - L

In the basic PID control system such as the one shown in Fig.(5.12(b)), if the |
reference input is a step function, then, because of the presence of the derivative term
- in the cbntrol actiorl; the manipulated variablé u(t) will involve an iinpulse function
(delta function). In an actual PID controller, instead of the pure detivative term Tas,
we employ : |

Tgs
1+vyTys
Where the value of (y) is somewhere around 0.1. Therefore, when the reference
~ input is a step function, the manipulated variable u(t) will not involve an impulse

function, but will involve a sharp pulse function. Such a phenomenon is called set —

point kick.
Diswrbance
Dis)
Reference . Output
input R(s) D Plant s
‘ controler  Gils) |
) Noise
Observed signal B(s) Nish
(a)
-] ] D(s)
Rz} Es) ) Us) e s
nas I K, | + | G ) |
Bs) e Tn
M)
. (&) . Ll L

Fig.(5.12) (a) PID controiled system; ®) Equivalent block diagram.,

(9
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5.1.1. P1-D Control
To avoid the set — point kick phenomenon, we may wish to operate the derivative

action only in the feedback path so that differentiation occurs only on the feedback

signal and not on the reference signal. The control scheme arranged in this way is
called the PI — D control. Fig.(5.13) shows a PI - D controlled system.
~ From Fig.(5.13), it can be seen that the manipulated signal U(s) is given by:

UE) =K 1+ 7 RE) -Kp (1+ 72+ Tes) BE)
Notice that in the absence of the disturbances and noises, the closed — loop
transfer function of the basic PID control system [shown in Fig.(5.12 (b))] and the

PI-D control system (shown in Fig.(5.13)) are given, respectively, by:
Kp Gp (s)

Y&~ (1+ =+Ta)

R(s) + ( 14 g+ Tds)l(p Gp (5)
and
Y (s) ( 1+ ) Kp Gp (s)
R(s) Tis 14 (14 75+ TasKp Gp )
1 . I(s)
Res) £) — Uts) Ys)
- Ts K, P> Gpls)
A
Bs) T
1 _ B(s) _ Ms)

Fig.(5.13) PI-D controlled system.

It is important to point out that in the absence of the reference input and noises, the

closed — loop transfer function between the disturbance D(s) and the output Y(s) in

cither case is the same and is given by:

(20)
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5.1.1. I~ PD Control _ .
Consider again the case where the reference input is a step function. Both PID

control and PI — D control involve a step function in the manipulated signal. Such a
step change in the manipulated signal may not be desirable in many occasions.
. Therefore, it may be advantageous to move the proportional action and derivative
action to the feedback path so that these actions affect the feedback signal only.
Fig.(5.14) shows such a control scheme. It is called the I — PD control. The

manipulated signal is given by:
U(s) =KPF:;R(S)—KP( 1+ 7=+ Tys) B(s)
_ Notice that the reference input R(s) appears only in the integral control part. Thus,
in I ~ PD control, it is imperative to have the integral control action for proper
operation of _tile control system. ,
The closed-loop transfer function Y(s)/R(S) in the absence of the disturbance input

and noise input is given by :
Y, 1 Kp Gp (5)
RS T8’ 14 Kp Gy (s) ( 1+ 2+ Tds)
1

It is noted that in the absence of the reference input and noise signals, the
closed-loop transfer function between the disturbance input and the output is given
by:

Y(5) Gp(s)
D(® 1+ KpGp (s)( 1+ T—i§+ Tds)

This expression is the same as that for PID control or PI-D control.
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Fig.(5.14) I-PD controlled system.

5.1.3. Dynamic Characteristics of the PI Controller, PD Controller, and PID

Controller
The PI controller is characterized by the transfer function

Gs)= Kyl + 72
The PI controller is a lag compensator. It possesses a zero at s = -1/T;and a

pole at S = 0. Thus, the characteristic of the PI controller is infinite gain at zero
frequency. This improves the steady—state characteristics. However, inclusion of the -
PI control action in the system increases the type number of the compensated éystem
by (1), and this causes the compensated system to be less stable or even makes the
.systcm unstable. Therefore, the values of K, and T; must be chosen carefully to
ensure a proper transient response. By properly designing the PI controller, it is
possible to make the transient response to a step input exhibit relatively small or no
overshoot. The speed of response, however, becomes much slower. This is because
the PI controller, being a low —pass filter, attenuates the high — frequency components
of the signal. Based on the preceding discussions, we can summarize the advantages
and disadvantages of a properly designed PI controller as [161].

1. Improving damping and reducing maximum overshoot.

2. Increasing rise time.

3. Improving gain margin and phase margin.

4. Filtering out high—frequency noise.
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5. May make the system unstable.
6. Integral control of the system can eliminate the steadyéstate error in the

. response to the step input [2].

The PD controller is a simplified version of the lead compensator. The PD
controller has the transfer function G(s) , where:
Ge(s) =K, (1 + Ts)
The value of K, is usually determined to satisfy the steady — state requirement.
The comer frequency 1/Ty; is chosen such that the phase lead occurs in the
neighborhood of the gain crossover frequency. Although the phase margin can be
increased, the magnitude of the compensator continues to increase for the frequency
region 1/Ty < w. (Thus, the PD controller is a high — pass filter.) Such a continuéd
increase of the magnitude is undesirable, since it amplifies high — frequency noises
that may be present in the system. Lead compensation can provide a sufficient phase
~ lead, while the increase of the magnitude for the high—frequency region is very much
smaller than that fdr PD control. Therefore, lead compensation is preferred over PD
control. The PD control, as in the case of the lead compensator, improves the
transient — response characteristics, improves system stability, and increases the
system band width, which implies fast rise time. PD controller can affect the
performance of a control system in the following ways [ 161].
1. Improving damping and reducing maximum overshoot.
2. Reducing rise time and settling time,
3. Possibly accentuating noise at higher frequencies.
4. Derivative control action, when added to a proportional controller, provides a
means of obtaining a controller with high sensivity [2].
5. Derivative control is essentially anticipatory, measure the instantaneous error
velocity,' and predicts the large overshoot a head of time and produces an

appropriate counteraction before too large an overshoot oceurs [2].
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The PID controller is a combination of the PI and PD controllers. It is a lag — lead

" compensator. Note that the PI control action and PD control action occur in different

frequency regions. The PI control action occurs at the low — frequency region and PD

control action occurs at the high — frequency region. The PID control may be used -

when the system requires improvements in both transient and steady—state

performances. Notice that the PID control, when designed properly, captures the
advantages of both the PD and the PI controls [161].

The PID controller may be written in the following form:
Ki
Gc(S)=KP+"S—+KDS

Where,
Kp = Proportional gain .
K; = Integral gain .
Kp= Derivative gain . .
The effect of Kp , K5, and f(D can be summarized as in the taﬁe 5.3.
Tablé 5.3 Effect of increasing the PID gains Ky, K;,and Kp

~ on the step response.

PID Percent Steady—
Settling time | Rise time
Gain | overshoot ~ | state error
Minimal |
Kp Increases | impact (Smali | Decreases Decreases
change)
Eliminate
K; Increases Increases Decreases | (Zero steady
— state error)
: Small
Small
Kp Decreases Decreases . change (No
: change _
. impact)
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EXAMPLE 5-1

It is important to note that the equations for obtaining the rise time, péak time, max-
imum overshoot, and settling time are valid only for the staiidard second-order system
defined by Equation-(5-10). If the second-order system involves 2 zero of IWo.zeros,
the shape of the unit-step response curve will be quite different from those shown in
Figure 5-7. ' . , ‘ ' T

F12€5-2)
Consider the system shown in(Eigure 5§, where £ = 0.6 and o, = 5 rad/sec. Let us obtain the rise.\
time ¢,, peak time ¢,, maximum overshoot M,, and settling time ¢, when the system is subjected
to a ugit-step input.

From the given values of { and w,, we obtain wy = @, V1 — * = 4and o = {0, = 3.

Rise time t,. 'The rise time is '
_m=p_314-8

) . s ] Wy 4
where B is given by
= _19—¢~= "'112
| B = tan pn tan™ o 0.93 rad
‘The rise time 1, is thus
trz_a_'}..tiug'—g-i-go_ssm
Peak time t,: The peak time is
f =T =32 _ o580

L4 [ %) 4

Maximum overshoot M,: 'The maximum overshoot is
M, = o = o 3/X34 = 095

-

The maximum percent overshoot is thus 9.5%.
Sertling time t,:  For the 2% criterion, the settling time is

4 4
t,~;—§—1.33sec .

For the 5% criterion,

Servo System with Velocity Feedback. The derivative of the output signal can
be used to improve system performance. In obtaining the derivative of the output
position signal, it is desirable to use a tachometer instead of physically differentiating the
output signal. (Note that the differentiation amplifies noise effects. In fact, if
discontinuous noises are present, differentiation amplifies the discontinuous noises more
than the useful signal, For example, the output of a potentiometer is a discontinuous
voltage signal because, as the potentiometer brush is moving on the windings, voltages

_ are induced in the switchover turns and thus generate transients. The output of the po-

tentiometer therefore should not be followed by a differentiating element.)

Section 5~-3 / Second.Order Systems @
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Figure 5-50
Response of a type 1
unity-feedback

" system to a ramp

input.

) J}
et

For a type 2 or higher system,
sK(T,s + 1{T,s + 1)

= = 00, for N = 3
=Py i S T

The steady-state error e, for the unit-ramp input car be summarized as follows:

8y = 1 oo, for type 0 systems
8BS .K:” ’ P
1.1 for type 1 syste
ey = % =0, for type 2 or higher systems

The foregoing analysis indicates that a type 0 system is incapable of following a ramp
input in the steady state. The type 1 system with mnty feedback can follow the ramp input
with a finite error. In steady-state operation, the output velomty i8 exactly the same as the
input velocity, but there is a positional error. This error is proportional to the velocity of

‘the input and is inversely proportional to the gain.X. Figure 5-50 shows an exaimple of the

response of a type 1 system with unity feedback to & ramp input. The type 2 or higher

system can follow a ramp input with zero error at steady state.

Static Acceleratlon Error Constant K,. The steady-state error of the system

with a untit-parabolic input (acceleration mput) which is defined by
r(t) - ‘5 forr =0
= (),

7 fore <0
is given by

hm s 1
=01 + G(s) 5°
—— - 1 -
;%SZG(S)

Section 5-9 / Steady-State Errors in Unity-Feedback Control Systems
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The static acceleration error constant X, is defined by the equation
r o 1o o2
;K..a - P_%S G(S )
The steady-state error is then

L1
£ Ka ~
Note that the acceleration error, the steady-state error due to a parabolic mput is an

error in position.
The values of K, are obtained as follows:

For a type 0 system,

sZK(z;;; W)(Tys + 1)
(Tis + 1Y (Bs + 1)

For a type 1 system,

. SK(Ts + 1)fTys + 1)
K" S0 (T 4+ ) Tps + 1)

For a type 2 system,

_ s*K(T,s + 1)Tps + 1)
K= O s 1 NN

3

Fora type 3or Ingher system,

K(Ts + )Tos + 1)« _
g KT8 + 1)Tos )=oo, for N = 3

* TS0 sMTys + 1)Tys + 1)

Thus, the steady-state error for the unit parabolic input is

7 €, = oo, for type 0 and type 1 systems

E = }}(—*, for type 2 systems
e, =0, fortype 3 or higher systems

 Note that both type 0 and type 1 systems are incapable of following a parabolic input

in the steady state. The type 2 system with unity feedback can follow a parabolic input

with a finite error signal. Figure 5-51 shows an example of the response of a type 2 sys-

tem with upity feedback to a parabolic input. The type 3 or higher system with umty
feedback follows a parabolic input with zero error at steady state.

Chapter 5 / Transient and Steady-State Response Analysés
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. Figure 5-51

Response of a type 2
unity-feedback
system to a parabolic
input.

1) |
)

Summary. - Table 5-1 summarizes the steady-state errors for type 0, type 1, and
type 2 systems when they are subjected to various inputs. The finite values for steady-
state errors appear on the diagonal line. Above the diagonal, the steady-state errors are

infinity; below the diagonal, they are zero.

Table 5-1 Steady-State Error in Terms of Gain K

Step Input Ramp Input | Acceleration Input
() =1 r(t) =1t ) =42

1 -

Type O system 1r R N oo
Type 1 system 0 X o0
Type 2 system 0 -0 , %

Remember that the terms position error, velocity error, and acceleration error mean
steady-state deviations in the output position. A finite velocity error implies that after
transients have died out the input and output move at the same velocity but have a finite
position difference. _ ,

The error constants K, K,,, and K, describe the ability. of a unity-feedback system
to reduce or eliminate steady—state error. Therefore, they are indicative of the steady-state
performance. It is genierally desirable to increase the error constal:fts, while maintaining .
the transient response within an acceptable range. It is noted that to improve the steady- -
state performance we can increase the type of the system by.adding an integrator or
integrators to the feedforward path. This, however, mtroduces an additional stablhty _
problem. The design of a satisfactory system with more than two integrators in series in

the feedforward path is generally not easy.
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